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1. Hamiltonian of longitudinal motion is:

H =
∆E2

2M
+ U(τ) (1)

where ∆E and τ are energy and time split between current and reference
(central) particles,

M =
β2E

1/γ2 − 1/γ2
tr

= 1039 GeV, U(τ) =
1

T

∫

eV (τ) dτ (2)

Here E = 8.938 GeV and T = 11.13 µsec are total energy and revolution
frequency of the reference particle, β = 0.9945 and γ = 9.526 – its reduced
energy and velocity, γtr = 19.968 – reduced transition energy, V (τ) – accel-
erating voltage. At stationary conditions, H = const what is an equation of
a phase trajectory.

2. The waveform V (τ) and potential energy U(τ) considered in this note are
presented in Fig.1 by red and green lines. They are periodical functions of
τ with period T . Equation of phase trajectory (blue line) is:

W (τ, ∆E) = ∆Em (3)

where

W =

√

√

√

√∆E2 + 2eV0M
|τ | − τ0/2

T
×
(

1 at 0 < |τ | − τ0/2 < ∆τ0

0 in other cases

)

(4)
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Figure 1: Waveform, potential wall, and phase trajectory (schematically)

and V0 = 2 kV. We will consider only closed trajectories satisfying the
inequality:

∆E2

m <
2eV0M∆τ0

T
(5)

3. Stationary distribution function F can depend on W only. If a beam is
subjected to some cooling and diffusion processes during enough long time,
the distribution is probably Gaussian:

F = exp
(

−W 2

2σ2

E

)

(6)

We will assume that

3σE <

√

2eV0M∆τ0

T
' 18 MeV (7)

to neglect the restriction following by Eq.(5). Then σE is r.m.s. energy
spread.

4. Now we calculate area S enveloped by any phase trajectory, and
relative number of particles N in this area:

S = 2τ0σE

(

x +
x3

3x2
0

)

(8)
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N =

√

2

π

(
∫ x

0

e−ξ2/2 dξ − xe−x2/2

1 + x2
0

)

(9)

where

x =
∆Em

σE
and x2

0
=

eV0Mτ0

2σ2

ET
=

τ0

σ2

E

× 93.35
MeV2

µsec
(10)

Dependence of S/(2τ0σE) on σ
/
Eτ02 is plotted in Fig.2 where parameter

is relative number of particles in the area S. It is reasonable to refer this
area as the bunch emittance for given part of the beam. For instance, at
σ2

E/τ0 = 10 MeV 2/µsec we have: S.8 = 3τ0σE, and S.9 = 4τ0σE.
The following fit is possible for 90% phase area:

S.9

2τ0σE
' 1.645 + 0.032

(σ2

E

τ0

)

+ 0.00172
(σ2

E

τ0

)3/2

(11)

that is
S.9 ' 3.29 τ0σE + 0.064 σ3

E + 0.00344 σ4

e/
√

τ0 (12)

where units µsec, MeV are used. Relative accuracy of this fit is plotted in
Fig.3. The error lies in a range ±0.4% at σ2

E/τ0 < 100 MeV2/µsec.
The phase area and emittance are adiabatic invariants, i.e. they do not

change at any slow transformation of accelerating voltage. However, in non-
adiabatic regime some increase of the emittance is unavoidable depending
both on mismatching of initial and final phase trajectories, and velocity of
the transformation.

3



0 20 40 60 80 100
σΕ

2/τ0 (MeV
2
/µsec)��

0

1

2

3

4

5

S
/(

2τ
0σ

E
)

N = 90%
N = 80%
N = 70%
N = 60%
N = 50%
N = 40%

Figure 2: Phase area of Gaussian beam
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Figure 3: Relative error of the fit Eq.(11-12)
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